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Al~tract--Using holographic interferometry and high-speed cinematography the heat transfer at the phase 
interface of vapor bubbles condensing in a subeooled liquid of the same substance was measured with 
ethanol, propanol, refrigerant R113 and water. To evaluate the axisymmetric temperature field around 
the bubble from the interference fringe field, the Abel integral method is not sufficient. A correction 
procedure considering the light deflection caused by the local temperature gradient has been developed 
and applied to calculate the heat transfer coefficient. The measurements were performed in the range 
2 < Pr < 15 and 1 < Ja < 120. Measured data could be well-correlated as functions of the Prandtl and 
Reynolds numbers for the heat transfer coefficient and as functions of the Reynolds, Prandtl and Jacob 
numbers for the bubble collapse time. 
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1. I N T R O D U C T I O N  

The thermo- and hydrodynamic phenomena during the collapse of  vapor bubbles in liquids having 
a temperature below saturation conditions--so-called subeooled liquids--are of  technical and 
scientific interest for a better understanding of  the instability condition in two-phase flow with 
subcooled boiling and in cavitation. The temporal course of  the collapse of  a vapor bubble during 
condensation in a subcooled liquid can be controlled by two different phenomena: (1) the heat 
transfer at the phase interface of  the vapor and liquid; and (2) the inertia of  the liquid mass when 
entering into the space created by the condensing vapor. 

With moderate temperature differences between the vapor and subcooled liquid the heat 
transport will be the governing process for the volumetric decrease of the bubble. This heat transfer 
process at the phase interface is influenced by the thermophysical properties, like heat conductivity, 
specific heat, latent heat of  vaporization, density and viscosity. Also, the gradient of  the saturation 
curve plays a role. The thermophysical properties can be expressed in dimensionless numbers like 
the Prandtl (Pr = ~ILCp/2L; r/L is liquid viscosity, 2L is liquid thermal conductivity) and Jacob 
[ J a = p L C p ( T s - - T ~ ) / p o A h ;  PL and Po are the gas and liquid density, Ts is the saturation 
temperature and h is the heat transfer coefficient] numbers. With bubbles moving in the liquid, the 
Reynolds number [Re = PL W(2R)/rlL; W is velocity and R is bubble radius] has to be taken into 
account. Also the Fourier number (Fo = aL t /2R;  at  is thermal diffusivity of the liquid and t is time) 
can be used as a dimensionless time to describe the duration of  the collapsing period. 

There is a large number of  theoretical and experimental studies in the literature dealing with the 
condensation of  bubbles. An extensive and comprehensive discussion of the state of the art can 
be found, for example, in the papers by Hammitt  (1980) and Theofanous et al. (1970). In the case 
of inertia-controlled condensation, Plesset & Prosperetti (1979) and Hammitt  & Kling (1972) found 
good agreement with Rayleigh's (1917) correlation. The situation with heat-transport-controlled 
condensation seems to be more complicated. Various authors describe the heat transfer at the phase 
interface of a condensing bubble as similar to that around a moving solid sphere (Moalem & 
Sideman 1973; Akiyama 1973) or a liquid droplet (Voloshko et al. 1973). Examples of equations 
describing the bubble collapse (Floschuetz & Chao 1965; Voloshko & Vurgaft 1971; Dimic 1977) 
are presented in table 1. The agreement of  data predicted with these equations is not too good, 
which may be mainly due to the unknown heat transfer conditions. Therefore, in the present study, 
holographic interferometry was used to gain better insight into the thermal and fluid dynamic 
behavior at the phase interface and thereby attain information on the heat transfer conditions. 
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2. EXPERIMENTAL TECHNIQUE 

In the literature the following techniques are reported for generating bubbles in a subcooled 
liquid: (1) superheating of a liquid boundary on a heated surface; (2) blowing saturated vapor 
through a nozzle into subcooled liquid; (3) flashing by depressurization; and (4) local heating by 
a focused laser beam. To guarantee that the boundary conditions were as simple and as 
homogeneous as possible in the experiments, the bubbles were produced by blowing saturated 
vapor through a nozzle, shown in figure 1, into a subcooled liquid moving slowly downwards. 

The vapor needed for generating the bubbles flows through the channel in the center to the small 
chamber situated at the inner end of the nozzle. The nozzle consists of a short capillary of 
dia = 1.6 mm. Around this central channel vapor is flowing in an annulus acting as guardheater, 
guaranteeing that the vapor for generating the bubbles is saturated. Before starting the bubble 
formation the capillary is closed at its inner end by a needle to prevent liquid entering the nozzle. 

The liquid in which the bubble is forming and collapsing was degassed extremely carefully and 
then cooled to a temperature temporally and locally as constant as possible. The latent heat of 
vaporization of the condensing vapor in the bubble raises the temperature of the liquid. Therefore, 
to guarantee that each bubble finds the same and equally subcooled temperature field the liquid 
flows with a velocity approx. 2 cm/s downwards against the nozzle. This small velocity does not 
have much influence on the detachment and rising velocity of the bubble. 

As mentioned above, the heat transfer at the phase interface was investigated by holographic 
interferometry in combination with high-speed cinematography. The optical setup is shown 
schematically in figure 2. An argon-ion laser is used as the light source. To obtain a short exposure 
time for each frame, the argon laser is externally modulated by an acousto-optic modulator. The 
laser pulses are triggered synchronously with the rotation of the prism in the high-speed camera. 
To perform measurements on bubbles, the real-time method was used. 
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Figure 1. Test section. 
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3. I N T E R F E R O G R A M  ANALYSIS  

To analyze the interferogram, the method known in the literature--e.g, the Abel integral (Hauf  
& Grigull 1970)--is not sufficient. Here one must take into account that the beam which passes 
through the temperature field around the bubble suffers a non-negligible deflection, caused by the 
large local temperature gradient. Therefore, the following correction procedure has been developed. 

In this study the field of  the refractive index (n) is described by a polynomial function as 
k 

n(r)=n¢~+ ~ ak(R--r) k+l, rB<.r<.R, [1] 
k = l  

where r is the radial coordinate, k is the degree of  the polynomial and n(R) = noo, ri(R) = 0. In the 
above equation, rB is the actual bubble radius and R is the radius measured optically from the 
bubble center to the edge of the thermal boundary layer. Initially, an analysis of  the interferogram 
is performed ignoring the deflection of  the light beam: 

~ + z  0 

e(y)20 = [n(r)-no~]dz, rs<.y. [2] 
,/ - z 0 

With the above equation the phase shift between the measured and the reference wave is calculated 
by means of  the order of  fringes ~(y) and the wavelength ;t0 of  the incident light. B inserting [1] 
into [2] we obtain 

~(y) = ~o f:°[k~f l ak(R -- r)k + 'l dz [3] 

and after rearranging and introducing the parameter Ck(y), 

where 

the equation 

ck(y) = ~ i~= o i (-- 1)"Rk+ I-i ri dz 

zo= , r = , / / + : ,  [41 

2 K 

a(y) = ~k~=, akCk(y) [51 

can be deduced. The factors ak can be evaluated numerically with the least squares method: 

~b = [en - e(yn)] 2 = e, - akck(y,) , [6] 
nffi l  = l  k = l  

I . % .  

(4) (~) 

. . . . . . .  

(1) 
a) 

Figure 2. Optical setup of the holographic interferometer: (1) argon laser, (2) Bragg cell, (3) pulse unit, 
(4) test section, (5) object wave, (6) high-speed camera, (7) reference wave, (8) shutter. 
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where e. is the measured order of fringes and N is the number of interference fringes. The 
mathematical condition for a minimum of 05 reads as follows: 

~3a/ 2.=, 5 . -  k~, akc~(y.) cj(y.), j = 1 to K, [71 

o r  

K N N 

Z ak ~ cj(y.)ck(y.)= ~ e.cj(y.). 
k = l  n = l  n = l  

The above equation can be transformed into matrix notation: 

N 

(E)jk = ~ cj(y.)ck(y.), 
n = l  

N 

(b),= ~ a.cj(y.), 
n = l  

where 

[8] 

[91 

[lO1 

E .a=b,  a =E- l . b ,  [11] 

from which the coefficient a of the refractive index polynomial can be evaluated. 
When considering the light beam deflection, the analysis of the interferogram is much more 

complicated than that discussed above. Figure 3 shows an example of the deflection of a beam 
which runs through the liquid boundary layer in the middle section of a bubble. Due to the 
continuously changing temperature in the boundary and the resulting change of the refractive 
index, this beam has a curved trajectory. For an observer beyond the image plane it seems to come 
from the projected point F on the focusing plane. In the image plane the object beam interferes 
with the reference beam which was not deflected. Both beams have the same phase relationship 
up to points A and D. Assuming we have ideal lenses, the optical path length of the two beams 
behind the points B and C to the image plane is equal. Therefore, the interference only originates 
from the optical phase shift difference of the object beam running through the liquid thermal 
boundary layer: 

~(y)20 = n ds - noDe .  [12] 

The path of the beam in the boundary layer is described by the following differential equation: 

1 ( l+f i2)  -Y~zz ' [13] Y=n 
where dots refer to the differentiation with respect to z. From [12] and [13] a new distribution of 
the interference fringes e (y) can then be evaluated numerically. This distribution can be approached 

n : r ~  

Figure 3. Formation of an interferogram. 
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by a correction of  the polynomial coefficients ak, which are evaluated ignoring the light deflection, 
with the least squares method: 

e (y )  = e(y,  ak) = e(y,  a ° + Aak) 

= e(y,  ak) + Aak, [14] 
k = l  ak = a ~ 

N 

tp = ~ [e. - e(y. ,  ak)] 2 
n = l  

= e. - e (y . ,  a°k) -- t3e Aa~ 
n = I k = I a k = a~ 

and 

- -  = Aak - -  = O. OAaj - 2 . . ,  e . - e ( y . , a ° )  - k = l  ~ ok=a~ Oaj aj=ao 

Changing the above equations to matrix notation with 

u Oe Oe 

a n d  

(U) j=  [ e . - e ( y . ,  a°)]|~-~ } 
. = 1  \ U ~ . ' j ]  ay= a~ ' 

A .Aa = U, Aa = A  - I .  U, a = a° + Aa. 

results in 

[15] 

[16] 

[17] 

[181 

[19] 

I w 

1 m m  

Figure 4. Interferogram of a heated sphere in ethanol. 
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By solving this matrix equation we obtain the coefficients of the polynomial for the refractive index 
field. If the dependence, dn/dT, of the refractive index n on the temperature, T is known, the heat 
transfer coefficient can then be calculated with the following equation: 

T~-T~ [201 

Verification tests of the forced convection on a heated sphere were made to check the correction 
procedure mentioned above. It was found that better reconstruction can be achieved with the 
correction procedure and the optically obtained results agree with additional thermocouple 
measurements to + 7o .  From an uncertainty analysis based on the method proposed by Klein & 
McKlintock (1953), the uncertainty of the heat transfer coefficient h is estimated within + 10%. 
An enlarged interferogram of the thermal boundary layer on a heated sphere is shown as an 
example in figure 4. 

4. RESULTS AND EMPIRICAL CORRELATION 

Figures 5 and 6 show interferograms of a condensing bubble at different Ja values. As can be 
seen, with low Ja the situation in the boundary layer varies considerably during bubble formation 
and bubble detachment and is quite different at the bubble top and the bubble root, as figure 5 
demonstrates. In the first few milliseconds the bubble is growing slowly by vapor addition out of 
the nozzle and a quite stable laminar boundary layer can be observed around the bubble. At the 
instant when the detachment of the bubble starts, the boundary layer becomes considerably thinner 
at the upper surface of the bubble. The lower end of the bubble shows small oscillations, producing 
high turbulent vortices in the drift flow. With high Ja, which correspond to a much higher 
subcooling, the situation around the bubble is completely different, as figure 6 demonstrates. The 
phase interface becomes very unstable immediately due to local condensation effects and no laminar 
boundary layer can be observed around the bubble, which condenses completely within a very short 
period of approx. 10 ms. Under these conditions the inertia of the liquid governs the bubble 
collapse. 

The holographic interferograms showed, at least at the top of the bubble, an effect of the relative 
velocity between the bubble and liquid on the heat transfer coefficient or the Nusselt number (Nu), 
respectively, similar to that of a solid sphere under cross flow conditions. Therefore, it was obvious 
to perform a trial to correlate the heat transfer by using the well-known equation 

Nu = C Re m Pr". [21] 

Using the bubble diameter at the moment of detachment as the characteristic length in the Nu and 
Re and by carefully averaging the measured data the correlation 

Nu = 0.6 Re °'6 Pr °'5 [22] 

was found for describing the mean heat transfer coefficient around the upper-half of the bubble, 
during the period when the bubble is still connected to the nozzle, i.e. before bubble detachment. 
The mean heat transfer coefficient was calculated from the local values taken along the bubble 
circumference at intervals of 10 °. Only these bubbles with their diameter not deviating from that 
at the moment of detachment, e.g. shortly before detachment, were taken into account. Examples 
can be given as shown in figure 7. In the calculation of Re, the relative velocity, i.e. the difference 
between the vertical velocity of the bubble center and that of the approach velocity of the liquid, 
was used. This equation is experimentally verified for Re values between 100 and 1000, Pr values 
between 6 and 20 and Ja values between 5 and 40. The equation is based on the assumption that 
the heat transport resistance is only on the liquid, which is certainly true for pure vapor not 
containing non-condensible gases. In contrast to the conditions around a solid sphere, the velocity 
at the phase interface is not zero and therefore the exponent with the Pr is higher than that for 
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solid spheres. The influence of the liquid Pr on the heat transfer situation is demonstrated in figure 
7, where interferograms of different substances with approximately equal values of  Re and Ja are 
compared. A comparison between experimental data measured by holographic interferometry and 
the predictions of  [22] are shown in figure 8. The heat transfer at the surface of  the bubble sticking 
at the nozzle but exposed to a slow cross flow is higher than that around a solid sphere, which 
can be explained by the smaller shear stress at the phase interface and by the movability of  the 
bubble surface. 

With rising bubble, i.e. after detachment, the heat transfer conditions become more complicated. 
With the holographic technique, boundary layers down to 0.05 mm could be investigated. In cases 
of  still thinner boundary layers or with turbulent fluid dynamic conditions around the phase 
interface the mean heat transfer coefficient hm was then evaluated from the temporal decrease in 
the bubble volume via an energy balance: 

Pc hLc Vo [23] 
hm-- ½Ao(T~-- To~)tk' 

where V0 and A0 are the volume and surface area of  the bubble at detachment and I k is the time 
of  condensation. This temporal decrease was measured with high-speed cinematography. Figure 
9 shows as an example the temporal decrease in the bubble volume. Measurements of  the 
temporal decrease in the bubble volume were carried out with the aid of  a film analyzer. In the 
film analyzer, the bubble pictures were enlarged and projected onto a screen with scale. For  
simplicity, the bubble size was measured with only one coordinate pair, which was taken as a 
rectangle round the bubble. With the assumption that the depth of  the bubble is the same as the 
width, the volume of  an ellipsoid and also the radius of  a sphere with the same volume can then 
be calculated as follows: 

R = x~b-~, [24] 

t=O.O 40.0 65.6 84.8 [ms] 

t=88.0 91.8 92.6 95.0 [ms] 

Figure 5. Interferograms of a condensing propanol bubble (p = 2 bar, AT = 7.6 K, Ja = 7.1). 
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Figure 8. Comparison of experimental data from holographic interferometry with the empirical 

correlation. 

where b is the width of the bubble and h is the height of the bubble. The time from frame to frame 
was registered through the timemarks (at intervals of 1 ms) which can be picked up on the edge 
of the high-speed film. 

As expected, the high-speed cinematography showed that the bubbles reach a constant 
equilibrium velocity shortly after detaching from the nozzle. Therefore, an attempt was made to 
describe the heat transfer around rising bubbles with the same form of the correlation as that used 
for a sticking bubble. The question, however, is which characteristic length should be used in Nu 
and Re. Due to condensation the bubble diameter decreases continuously while the bubble is rising. 
Using the instantaneous bubble diameter would need a rather extensive and iterative procedure for 
calculating the heat transfer rate. In the literature, however, reliable equations can be found for 
correlating the bubble diameter at the moment of bubble detachment. Therefore (and with respect 
to a simpler procedure in practical use), the bubble diameter at the moment of detachment was 
used, which can be easily predicted by 

3 ~ [25] d = q apg" 

With the least squares method the experimental results could be correlated in the simple form 

Nu = 0.185 Re °'7 Pr °'5, [26] 

representing data up to Re = 104. The low value 0.185 of the constant in [26] is because of the use 
of the detachment diameter as the characteristic length. As shown in figure 10, this correlation 
corresponds well with measured data of different substances. The correlation can be used up to 
Ja ~ 80, as long as inertia effects do not play a dominant role. 

The high-speed cinematography also gives information about the temporal decrease in the bubble 
diameter, which is closely related with the heat transfer at the phase interface. The duration of the 
bubble life can be expressed by the Fo in dimensionless form and using the experimental data the 
simple correlation 

Fo = 1.784 Re -°'7 Pr -°'5 Ja 1.0, [27] 
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Figure 9. Temporal decrease in the bubble volume. 

for predicting the total condensation period, was found. Up to Ja = 60 this equation corresponds 
well with the measured data, as figure 11 shows. When Ja > 80, the measured collapse Fo no longer 
depends on the Ja. This indicates also that above this Ja value the inertia forces play the dominant 
role. 

The temporal decrease in the bubble diameter can be predicted using 

fl = (1 - 0.56 Re °'7 Pr °'5 Ja Fo) °'9, [281 
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Figure 10. Mean Nu of rising bubbles, comparison with [26]. 
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Figure 11. Condensation time, comparison of measured data with [27]. 

which was correlated from the data measured in this work, i.e. in the range 2 < Pr < 15, 1 < Ja < 80, 
R0 < 3 mm. Comparison of  the temporal decrease in the bubble diameter predicted from [28] and 
the equations listed in table 1 is shown in figure 12. In the equation from Floschuetz & Chao (1965), 
the translatory motion of  the bubble is not considered, so that curve 1 looks qualitatively different 
from the others, particularly at the end stage of  bubble collapse. Although curves 4-7 show a 
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0.01 2 

i .=  
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Figure 12. Comparison of the temporal decrease in the bubble diameter predicted by [28] and that listed 
in table 1, 
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Table 1. Equations predicting the temporal decrease in the condensing bubble diameter 
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Curve in 
Author(s) figure 12 Equation Remarks 

Floschuetz & Chao (1965) 1 

Voloshko & Vurgaft 2 
(1971) 

Voloshko & Vurgaft et al. 3 fl = 
(1973) 

Moalem & Sideman 4 fl = 
(1973) 

5 

Akiyama (1973) 6 

Dimic (1977) 7 

R 16 
fl = - -  = 1 -- ~ z,v = - -  Ja 2 Fo 

R n rt 

f l = l - - 6 . 7 7 6 x  104Fo 

1 _ ( 6 K  ja  pet/2 Fo'~ 2/3 

\d2~ ] 

( 1 -  ~33 Ja Pe'/2 F o )  5/7 

5 1 fl = (1 - - - -  Ja Pe t/2 F o )  4/5 
\. 2~  

fl = (1 - 2.8C Pr -°27 Ja Pe °'~ Fo) s/7 

f l = [ 1 - - 5 x ~  ~ (3~)-'/4 Arl/ '  prl/2 Ja F o ]  '/5 

8 fl = 1 - 7 K t/4 Ja Fo 

Peclet number  Pe = (2Rowo)/aL; Archimedes number  Ar = g(2Ro)/v~. 

40 < J a  < 7 5  

K = 1.88 

2 < R 0 < 4 m m  

R0< 1 mm 

C =0 .37  

Re > 3.1K~ 2s, ~ = 2.61 

4.02K~ 2t6 < Re < 3.1K~ 25 

similar trend to our own curve, the time of collapse predicted by [28] is apparently shorter. In the 
equation from Akiyama (1973), the heat transfer at the phase interface of the condensing bubbles 
is described as similar to that around a moving solid sphere. Equation [28] predicts a faster collapse 
than is given by the equation in Moalem & Sideman (1973) with a final collapse Fo about 25% 
lower than is given by their equation. The correlation developed by them is based on a potential 
flow type analysis. The equation from Voloshko & Vurgaft (1971) shows a very fast rate of bubble 
collapse. This may be attributed to the higher bubble frequency and larger bubble size in their 
experimental condition. 

5. CONCLUSIONS 

The measurements with holographic interferometry and high-speed cinematography show that 
the heat tansfer and volumetric decrease of pure vapor bubbles condensing in a subcooled liquid 
of the same substance can be reliably correlated using the dimensionless Ja, Re, Pr and Fo. The 
Ja value gives a clear indication of whether the heat transfer or the inertia is dominant in the 
condensing process. Up to Ja = 60 to 80 the condensation is purely controlled by the heat transfer 
at the phase interface. After a situation of mixed conditions (heat transfer and inertia), with 
Ja > 100, inertia forces then start to become the exclusive effect. 

A c k n o w l e d g e m e n t - - T h e  a u t h o r s  wish  to t h a n k  the  D e u t s c h e  F o r s c h u n g s g e m e i n s c h a f t  for  f inancia l  s u p p o r t  
o f  th is  work .  
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